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THRESHOLD SELECTIOR AND DFTETOR 
P E R F O W C E  WITH uNIc" NOISE COVARIANCE 

coherent detection of white, bandlimited, stationary, gaussian signals 

in additive white, bandlimited, stationary, gaussian noise with unknown 

covariance. The results indicate that the critical term in the aposteriori 

probability expression, arising from Bayes' theorem, is the Wishart density, 

W(2WT,5,01), and is maximized when the norm, I - Z-gi I is minimized. 
results are extended to include an illustration of threshold selection and 

The 

an evaluation of detector performance. Threshold selection based upon 

estimation leads to detector performance that is a random variable. The 

probability l a w  for detector performance and the expected performance and 

variance of performance are developed. Demonstration of the convergence 

of the expected performance and variance of performance to the specified 

performance and zero respectively is given. A n  approximation of the 

probability l a w  associated with a hypothesis testing variable is used to 

obtain closed 

is included. 

form expressions. An investigation of error in the approximation 



Signal detection in digital data systems generally consists of 

comparing some computed quantity with one or more thresholds in order 

to establish the message symboltransmitted. 

encoded into channel symbols for modulation and transmission, the object 

Since message symbols are 

of the detection system is to process the received waveforms and to make 

the decision. 

alter the transmitted signals. 

Processing is necessary because the channel characteristics 

Data processing of received waveforms is carried out with the intent 

of extremizing some criterion of optimality for some available signal-to- 

noise ratio, SHR, and for scune specified data rate (binary digits or code 

word blocks per unit time) = 

the maximization of the aposteriori (sometimes called forward) probability 

obtained with Bayes' theorem. 

information theory concept of maximizing the mutual or transinformetion 

relative to a source (transmitter) and a sink (receiver). 

theorem specifies the data-processing structure of the detector. 

The criterion of optimality has been generally 

This criterion is exactly identical to the 

Thus Bayes' 
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11. FORMULATION OF THE DETECTION PROBLEM 
IM TRUE DECISION SPACE 

The majority of the problems under consideration m e  centered about 

such models as i l l u s t r a t ed  i n  Fig. 1. 

Fig. 1 

The channel character is t ics  may consist of multipetth propagation with 

various degrees of delay fo r  each path, multiplicative disturbances which 

may vary with path delay, phase s h i f t ,  and additive noise. The simplest 

s i tua t ion  consists of additive noise and is  i l l u s t r a t e d  i n  F ig .  2, which 

Fig. 2 

represents t h e  s i t ua t ion  under consideration, 

Recognizing tha t  a time limited f’unction s ( t )  cannot be represented 

exactly by a f i n i t e  combination of orthonormal basis  functions f r o m  et se t  

t ha t  i s  complete and closed i n  a harmonic extension of s ( t ) ,  it is s t i l l  

possible t o  approximate the norm of s ( t  ) by a f i n i t e  number of t e r n  
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With a bandlimited assumption and invoking the  sampling theorem, we see 

that for  a baud or ciuration 'i! sec ., one wbtaiiis 2kT aaarples . 
s ( t )  and n ( t )  are  sample functions from independent, stationary, gaussian, 

random processes, bandlimited t o  W cps; they may be represented by vectors 

k r i i - 4  

S and N i n  a vector space of dimension 2wT. 

theorem is 

Since il; = S + B, Bayes' - - -  - - 

a d  i=l, 2 for  the binary channel. 

(2) 
Then for ident ica l ly  distributed samples, 

1 1  -1 -m - 2 e2 [&Ei]' An [z-giI 

l-T d4m 
J P 1  

m=l  

- 3, the  only term of importance is the exponent weighed by appropriate values 

of P&), P(g2) which are usually assumed equal for  the  equally probable 

binary caae. Thus the i t h  detector branch is  t o  minimize the  quantity 

- S . ] '  A -' 1% - gi] With an additional assumption of white gaussian 
-1 n 

processes, 
R*(T) = K w s i n  ( 2 ~  WT) 

2X WT 0 - ( 5 )  
n which has zeros at points T = /2W, n=l, 2, ... . Hence sampling at 

a rate 1 / 2 W  sec yields  uncorrelated and independent simples. 
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The quadratic form t o  be minimizing thus becomes 

The same result of uncoupling the quadratic terms could have been achieved 

by "pre-whitening" requiring an ortho)gonal transformation on - 3. 
bina,ry channel, the detector compute8 I - Z - gS11 and 112 - &-+I1 and se lec ts  the 

For a 

smallest . However, 

m = l  

and it i s  necessary t o  have phase coherency t o  carry out the computation, 

e.g., the receiver must have time 'reference knowledge reLative t o  the 

received waveform amplitude. Thus minimizing the norm, (6-B), consists of 

maximizing the inner product 

The detector s t ructure  fo r  t h i s  simplified case, with known covariance, 

is then a correlation computer. For the binary channel, the  Bayes' detector 

s t ructure  i s  i l l u s t r a t ed  i n  Figs. 3 and 4 f o r  continuous and discrete  data 

processing respectively. 
+ 
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Assuming uncorrelated signals, Sl ( t )  = 0; 9 (t) = sit$; C c t -e T, and - -  2 

i= -;-few of the tssmpttm on s [t) and n(t ,>,  the detector computed qu,ntities 

will be random variables with means and variances for  s ignal  absent and 

signal present respectively, 

- -  

= 0 

EL *21 = 2wT OS2 = 2WT(s0w) watts 

and 
2 2  

C = 2wT an us 
$7 'I 

2 2 2 
Q = 2WT us [2us + an ] 

$2 

Normalizing with respect t o  2WT one obtains Y1 and Ye. Note :hat since 

Y is a l inear  combination of received data whereas Y i s  the sum of 1 2 
2 2  squares, we have P(Y1) = B(O,on us ) and P(Y2) a gamma density which i a  

2 3  2 2 
asymptotically normal f o r  large 2WT, N(us ,cb-(2crs + an )). 

The t rue  decision space is  a vector mace of dimension and the - 
c q u t e d  quant i t ies  Y1, and Y2 represents distances i n  the vector space 

fran EIY1] and E[Y2]. 

aforementioned probabili ty l a w  and can be mapped onto the l i n e  Yi, i = 1,2- 

These distances are randm variables with the 

A sketch of the P a  d f. of Y1 re lat ive t o  the p.  d.f 

i n  Fig. 5. 

of Y2 i s  i l l u s t r a t e d  

2 If the parameters us and on2 -- are  known, then a threshold, Ao, can be 

selected t o  yield any de&ed false  a l a r m  probability, ao, or f a l se  

dismispal probabili ty Bo, or for equal a aqd B, according t o  



- 6 -  

E (Y1)=O 

or 

0 -A 
0 

h or A0 such that 
0 QD =s P(Yl)dY1 =s P(Y2)dY2 = 

0 
A 0 
0 

for some specified a or B where 0 <a = 1_, 0 < Po < 1 . - 
O 2  2 0 0 

It is reasonable to assume knowledge of s(t) at the receiver such that 

' is known. However, the covariance matrix of the additive channel noise 
S 

is not known,hence the true decision space is unknown and any threshold 

selection based upon estimation leads to random detector performance. 
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It is  the object of the following section t o  establish the form of the 

optimum Bayes'detector s t r i c t -me  for  the case ef i;n,t,nm+ mise  usiri 

supervisory data transmissions over a bauds. 

111. STRUCTURE OF "E OPTIMUM BAYES' RECEIVER WITH 
UNK" CHANNEL NOISE COVARIANCE MATRIX 

I n  s i tuat ions where additive noise is stationary or  "slowly varying", 

estimates of the  noise covariance, A, can be made. Slowly varying can 

be interpreted as t h a t  si tuation, such tha t  when ample samples of a 

process are  taken t o  insure convergence i n  probabili ty of the  computed 

s t a t i s t i c ,  no appreciable difference i s  observed i n  the computed s t a t i s t i c .  

The estimation properties of a parameter 8 = A-i, depends upon the 

sufficiency, consistency, and efficiency of the estimator 6 .  
8 is  usually some transformation or  combination of samples from a population 

The estimator 
A 

with parameter 0, and converges t o  8 i n  the  limit. The property of 

convergence is  u t i l i zed  t o  reduce the  uncertainty of 8 by reducing the  

variance of 8. Thus, given a sequence of samples (3 1 = iz. .;b ... % 

where 

* 

-j -1 -2 -n 

A model can be established where the  decision on the  jth baud m u s t  be 

obtained with no knowledge of 8 except the  estimate 

current baud and j-1 previous bauds (see Fig. 6). 

obtained from the 
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Fig. 6 

This model 

transmission is 

represents the  s i tua t ion  where a supervisory period of 

provided i n  order t o  es tab l i sh  0 t o  within cer ta in  

confidence limits. The supervisory transmission implies c lass i f ica t ion  

of the received s ignal  8 at the receiver on a per baud basis.  
-3 

Bayes' theorem fo r  t h i s  s i tua t ion  i s  

and I s  maximized when P(Z,g Si) i s  maximized, thus maximizing the  aposter ior i  

probabi l i ty  of gi being transmitted given t h e  jth bald - E a d  j - 1 

previous bauds re f lec ted  i n  2 = zl, . . . ., Z 

However 
-,I - 

Since P ( 4 q )  does not a f f ec t  the  decision, the  Bayes' receiver must 

only (17). 

compute 

The first term i n  the integrand i s  

P(g  2; O;gi'), which i s  the  same as P(3J O;gi), where 8 i s  t h e  inverse 

of the  covaziance matrix of theprocess Z ( t )  when the  ith s i g n a  i s  given. 
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For the  Gaussian assumption, 

The second term i n  the  in tegand is  

The probabili ty l a w  on 0, P(Q), if  found v i a  the Wishart l a w  L2. a 

and using a s l igh t  modification of Keehn's r e su l t  t o  r e f l ec t  apr ior i  

knowledge is  

where Ck = 
,"O 

i s  the required 

0 

(20-B) 

normalizing term developed by Wishart t o  insure tha t  

P( e) s a t i s f i e s  the axioms required of a p.d.f. 

(See Appendix II fo r  a camplete interpretat ion and derivation of the  

results i n  this section).  

The term O0 i n  20-A can be interpreted as an estimate of 8 based upon 

no samples from a population containing 8 or simply an i n i t i a l  guess 

weighed by some constant no. 

using (18) 
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fo r  the  E identically dis t r ibuted.  

Neglecting the denominator of (19) since f t  Only serves t o  normalize 
\- j 

p(eIz;s - -i ) t o  sa t i s fy  J. .fP(elz;g.J dell.. 'dekk = 1, and using (20-A) 

Thus P(elz;gi) i s  a Wisharc, density, W(k, nl, 0,) 

with parameters 
n = n  + n  1 0  

(22-A) 

(22-B) 

Substi tuting c1,Ql i n t o  (22-A) and modifying C 

of the  substituion and re ta in  normality ylelds  

t o  absorb the  e f f ec t s  
k, no 

Using (18) and (22-C), the in tegra l  of (17) i s  

I n  order t o  evaluate an in tegra l  of the  form of (l7), Keehn uses ' the 
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(26  1 
With (26), and factoring and normalizing (25)  [see Appendix I1 s t a r t i ng  w i t h  

which f o r  the  band-limited assumption, 

K = 2W (baud sample s i z e )  

n = number of supervisory bauds currently received; range of J i n  the 

Consequently the aposter ior i  probability i s  maximized when (28)  i s  minimized. 

Recalling (22-B), and t h e  assumptions of Section 11, i f  t h e  estimate 

i s  obtained from the population, o r  simply assuued t o  be diagonal i f  

Q i s  a guess, a1 
vhen 1 1  8-S Hence f o r  whlte noise, the 

Wishart density a l so  leads t o  the correlat ion computer receiver s t ruc ture  

0 

-1 w i l l  also be diagonal and then (28) w i l l  be m i n i m  
0 

i s  minimized as i n  section 11. -- 

as the optimum detector s t ructure .  
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3 Keehn's work essentially develops the form of the Bqyesl receiver 

structure for unknown covariance matrix yielding a Wishart Density in the 

aposteriori probability expression, This form, assuming signal classifi- 

cation on a per baud basis at the receiver, leads to the same form of 

detector structure in the ith receiver branch as for the case of known 

covariance matrix with one exception. 

matrix 

in place of the true covariance A .  

and the term <[E-%] [5-gi] '> represents corrections to Qo based upon n 

samples from n k-variate bauds. 0 

of Abased upon no samples. 

The exception is that the covariance 

Ql, which is a weighed average of Q0 and < [E-S.] &-si] ' >, is used - -1 
Q represents aprfori knowledge about 
0 

is either a guess or an apriori estimate 
0 

In summary, this section has thus developed the Wishart density term 

of the aposteriori probability expression for the case of known signal 

covariance and unknown noise covariance. It is the object of the following 

section to illustrate a technique of threshold selection and to establish 

the type of detector performance that might be expected. 
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For t h e  conditions and assumptions established i n  Section 11, 

the p.d.f. 's associated with the hypothesis t e s t ing  variables, Y1 and Yz, 

were observed t o  be N(O,tyn2v:) and gamma, becoming asymptotically normal 

iu(o, ,us (2us +bn )), respectively. 
2 2  2 2  Equations ( l a ) ,  (l3), and (14) 

were given t o  i l l u s t r a t e  a means of select ing the  threshold, 4, for  

par t i t ion ing  the  t rue  decision space when s ignal  and noise parameters 

&re h G k X i .  

For supervisory data transmission, it i s  appropriate t o  indicate  

t h e  threshold byJ 

Since the noise parameter /1N i s  not known, it i s  necessary t o  estimate 

t h i s  parameter u t i l i z i n g  a l l  ClaSSiA'ied data avai lable  i n  2, and any 

other  apriorf knowledge available i n  the form of Oo. 

$since it i s  t o  be updated a t  the  end of each baud$ -a% 

Recalling (22-B) and noting t h a t  

i s  a weighted sum of n synmetric, kxk matrices which add up t o  one n a t r i x  

w i t h  the  jth diagonal elements given by 

n 

1=1,. .,k 

For the  assumptions of white Gaussian s ignal  and noise, the var ia t ion  
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about zero of the non-diagonal te r~rgwhich  are estimates of t h e  cuvariances 

of bN, will be of no in t e re s t .  

Sampling a t  a r a t e  of 1/2w w i l l  y i e ld  samples spaced i n  time consistent 

with the  zeros  of t he  autocorrelation function and hence independent. 

For the  ident ica l ly  d is t r ibu ted  samples (29-A) w i l l  reduce t o  a sca l a r  

matrix and assuming the same charac te r i s t ics  fo r  the apriari knowledge 

Oo yields, 
A 2  

0 

0 0 

noA0 + n A .. E 

hN * *  n + n  n + n  

The combined estimate for  the  noise'parameter 0 ie then N 

A2 2 
where aN 

upon no samples and gN is an estimate 'based upon n claeePfled samples. 

i s  an apr io r i  estimate from a population containing oN, based 
A 2  0 

If an unbiased 5stimator is ased for both estimates, then 
2 2 

no uH + n  QN 
n + n  

n E[g2 ] -t h E[$$ 

n + n  (294 1 2 
- =  = bN O No 

0 0 

2 ana 

it w i l l .  appear 86 a bias but w i l l  be negligfble f o r  la rge  n. 

is unbiased for uNb If cy: is  a guess with weighting no 
0 

Selection of a threshold for  some specif ied false alann probabili ty,  

say CT ,require8 the solucion of 
0 
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where M is the greatest upper baud, g.u.b., with confidence level p - - 
O < p < l  

written 

J. J. 

if uN - 2  is an estimate based upon no apriori samples. The chi-square, x 2 , 
0 1 

E 

quantities mise from JXL5 f(x2)dx2 = J; f(x2)dx2 = 9 , 0 < p < 1 

1 n 

(31) 

(32) 

2 0 < x < =  
n -1 

where f(x 2 ) = e - -  2 (x 2 -  2 
"1-1 

-1 = G(x2; $, T I  1 

2 
X 

- 2  If uN is a guess no consistent quantatative confidence can be assigned. 
0 
Us- maximum likelihood-unbiased estimation, the solution of 

which is sufficient for aN since 
I 
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where h(2) - i s  independent of 0; and degenerates t o  1 i n  t h i s  case. 

Dropping the  1, subscript a s  a r e su l t  of t he  iden t i ca l  d i s t r ibu t ion  

assumption, the estimate el; is  a random variable  with probabi l i ty  

density function 

0 < 2N2 < Q) (35) 

Thus M will be a random variable with a gamma probabi l i ty  density and the  

i n i t i a l  s tep is  t o  solve (30-A) for  A. . Rewriting (30-A) as 
n 

0 
A A on 

eww2dw] = $ [1-erf ( ) ]  (36) 
Jwa S 

aO 
0 

the  d i f f i cu l ty  i s  Immediately observed i n  t h a t  the e r ror  function over 

a f i n i t e  in te rva l  i s  an incomplete gama f'unction and only an approximate 

solution w i l l  be possible. 

Proceeding direct ly ,  there are  two possible se r ies  expressions for  

(36.). One i s  an asymptotic expansion about Q) f o r  large A. , hence small 
n 

ao, which is  found t o  be 

e- 2 2  - 
Os 

a. - Jn 

W c 
A=O 

(37) 

L 1 

k=l 
with the generalized f ac to r i a l  term ( $ ) =v ( 5 ) + k - l), L 2 1 

A=O = 1  
and which can be truncated with an er ror  less than the last term used. 

The other s e r i e s  i s  obtained by a d i rec t  term by term integrat ion 

- 

of the  convergent se r ies  for  the in tegra l  of (36) t o  obtain 

- -  

(2A + 1) I 



A point solution for 4, is desired as srposed to an interval 
soiution. In order tt G M d n  this frm (37) or (381, a siPGle tern 

truncation waild be necessary which obviously is not satisfactory. Thus 

no further usef’ul progress using the direct approach with (37) or (38) 

seems possible. However the theory of approximation suggests a change 

of integrand in (30-A) with a suitable approximation in situations such 

as this. Thus by approximating P(Y,) with the Laplace density function 

- Iy1’cI I 
P(Y,) = ’ e  tz 

M”S F ”  e , a =  - 
4-2 

it is possible to obtain a point solution foran from (30-A) as 

%n 

which is 

o c a  < 

for some 

required 

0 

positive since all terms are positive and a. is such that 
1 - Furthermore, end conditions are also consistent in that, 2 

I specified a. 4 0; .A + + Q) and for a * v  , Aon -. 0 as on 
(see Fig. 5 ) .  

A Thus sinceAon is a lineax function of 0 taking on new, updaked, ” 
values at the end of each received baud, it will be a random variable 

following (35) since combinations of gamma variables reproduce gamma 

variables. Consequently, it follows that the actud probability of 

false alarm, a, will a l s o  be a random variable. 

At this point it is necessary to disgress and outline the remaining 

objectives. First, it is necessaxy to establish, through a series of 

transformations, a probability density f2mction of a variable as 

characteristic of 01 as possible; then to establish the convergence 

pruperties of the mean and variance of this variable. 
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"he ac tua l  value of 01 at m y  decision time i s  given by 

W 

1 

a =  &--Efls 0 

n 

which y ie lds  

Equation (42) 

degree random 

and 

P(S,2) = 

"1 
i s  wri t ten as a l ine= combination of a r a t i o  of second 

variables which suggests the change of var iable  

where 

2 n -1 n -1 1 1 
9 s2 1 G(  '7 i 2 

2aN 

2 
0 < S1 <a, (43-A) 

0 < s*2 < w  

4 Using an ident i ty  , the  density 

1 n -1 
f(A) = G( ---* ; 2 S2 2 ) dS1 2 d S t  = 

n -1 1 

A = Sl 2 2QN 
- 

n -1 1 s22 - - 1  r (n , - l )  A 2 

is obtained. 

Now l e t  h = (LnTa ) 

Then 

1 2  
= ho A 

1 lJI= - 
hO 

(44) 

(45) 
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= P([Ln 
f -l [$-J - 2 

=0 

thus 

For 

and (5x1 

Thus in the l i m i t ,  as 5 - - 
1 2  1 E[h] = E[ (Ln %) 3 -. (In - I2 

=0 

and 

1 4 
=0 h 

Curves-' of E[h] / (Ln - 
are obtrtined f h m  (48-A) and (49) and il lustrated on Figs. 7 and 8 .  

)2 and u / (Ln I,, mo) as a function of n1 
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The required receiver-detector s t ruc ture  for up d a t i n g h  

i l lustrated on Fig. 9.  

is on 

Jbn 
Threshold 
Command 

Ln ( l/m, 1 

r * e r i o r m M c .  
L Select or n 

- 
Specified 

aO 

Synchronized 
Signal 
Goner at or 

1 
TW 

1 -  BauU 

X;(nl) 

1 n XL 
--). Lookup 

F i g .  9 

The error i n  approximating P(Y,) with the Laplace density 

function i s  defined as 

E = Ian(t> - q t )  I (54) 

and is plotted as a function of a. i n  Fig.  10. 
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a 0 1  € -  .I 

Fig. lo 



v . CONCLUSIOIJ 

For the  assumption of a gaussian s igna l  i n  additive gaussian noise, 

with unknown covariance, the  r e su l t s  of Section I11 indicate  that  the c r i t i c a l  

term i n  the  aposteriori  probabili ty expression arr ived a t  through &yes’ 

theorem i s  the Wishart density, W(2krP, nl,O1), with parameters nl,Ql as 

defined. With the additional msunptions of white, bandlimited s ignal  and 

noise, c lass i f ied  data a t  the receiver, and the discussion i n  Section IV, 

it was shown t h a t  even with the Wishart form, the  apos te r ior i  probabi l i ty  

i s  maximized when the norm, II;IJ-giIl, i s  minimized, leading t o  t h e  correla- 

t i o n  computer s t ructure .  The r e su l t s  of Section III were used t o  

i l l a t r a t e  the up dating of A, with c lass i f ied  estimates. 

Section PV introduced a technique for  select ing a threshold, -% , 
n 

f o r  hypothesis tes t ing .  It was shown that ac tua l  detector  performance, 

u, would be a random vari2.bl.e with 8 meari and vwiance t h a t  converges t o  

the specified performance, ao, and zero respEctivcly* 

ap r io r i  knowledge of nn 
entered a t  a point no -b nl t o  es tab l i sh  the uncerteinty of performence 

resolved by aprior i  knowledge. If i s  a guess, no confidence can be assigned, 

and the convergence properties,  as established, w i l l  not hold. 

For t h e  case of 

based upon sample s i z e  n Figs?. 7 end 8 may be 
0’ 1 

0 

The curves i n  Figs ‘/‘ and 8 are normalized with respect t o  Ln 1/2L-fo 

t o  i l l u s t r E t e  convergence properties independent of SNR. The r e su l t s  

indicate  t h a t  with no ap r io r i  knowledge, 23 supervisory bauds are suf f ic ien t  

t o  y ie ld  expected performance t o  within 10s of specified performance and 

97 bauds yield expected performance t o  within 2% of specified performance, 

!The normalized variance of performance i s  down t o  25$ by the P3;rd baud and 



. 

decreases t o  4 .54  l n  99 bauds. The convergence characteristics of the 99 

percentile upper confidence llmit for a weighed sample variance and a weighed 

varlance of a sample variance are Included for comparison, The rapid 

convergence of E[h]/(Ln l/zCro)2 for emall vsluee of “1 I s  due t o  the 

difference of gamma functions in the expression for E[h]. 

The error, a i n  computing ac tua lu  due t o  the  approximation m c s  

from 2#2$ for specified CYo 9 10” t o  .l5$ for uo = 3.XI.0’5, lnaicatlng 

the nature of the Laplace density a8 an approximation In thie ca8e. 
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APPENDIX I 

The terms i n  33ayes’ theorem for t h e  gaussian case are obtained by 

considering the conditional probability that the mth received sample k l l s  

i n  an interval dc  as m 

which for sample’size SlW of ident ica l l .  distributed sahples 

Llkewiae 

and P( Si I s} follows ea i n  (4). 

The means and variances o f t h e  detector caupUted hypothesib 

tes t ing variable8 are found aa follows. 

The detector branch matched for s ( t )  w i l l  conqntte variable8 

depending upon whether signal i s  absent or present respectively. 
aml f2 



for  ident ical ly  distributed, 2wT variate ,  zero mean samples where 

signal and noise are  independent. 

2wT 2wT 

[ '3 = E[ (a_'s)2] = E[ = E[ 1 nmSm 1 Irsk] 
m= 1 k = l  

E $1 

1 
2wT 2wT 2wT 

= (nmsm)2 + 1 1 "mSm"ksk 
m= 1 m = l  k=l 

1:fXl 
2wT 2m 2wT 

= 1 E [n:sm"] + 1 1 E [nmsm"ksk] 
m = l  m=l k=l  

2wT 2wT 2wT 

= 1 E Ln:] + 1 1 E [.m] E ['m] '[a] 

+ o  
S 

= 2wT 4JN 0 

m = l  k = l  
k#m 

where samples m, k are  uncorrelated and hence independent. 

+2] = 

fo r  the zero 

m = l  m = l  m = l  

2wT 0; = 2wT s w WATTS 
0 

mean assumption. 

(1-5) 

NOW - 

m = l  k= l  m = l  m = l  k= l  
kfm 
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(1-8) 2 2  - 2wT p; + m(m-1) ua u1 

For the eero man g w r l a n  aaauruptlonr, the r t h  ray mane& i r  - 1.3.5 . (rkl) 8, hence 
4 

P i  - 3u (1-9) 

(1-10) 

P1 

- 0  

,Hence *an (I-?), (I-lo), (I-U) and (I-12), 

(1-u) 

(1-12) 
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4 

2 l  = 2wT [ as @us + UN) 
2 2  
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APPEEJDM I1 

Using BayePs theorem, the ~pos;teriorS,probabflity fo r  the binary 

i=1 

which is maximfzed when P(2, B IS ) is maximum. 

But 
-i - -  * 

+: 

(11-1) 

(11-2) p(z,II 12%) = p@ - I - z; Si) Is,) 
and 

P(B Z: s . )  = r P ( Z  1 Zg 
‘-i J - -  -1 S.) P(8 13; Si) de (11-3) - -  

where 0 is the inverse of the covariance matrix of the random process 

- Z(t) when the i t h  signal is present. The term P(i5 - -  I Z; 0, gi) is the  

%he remaining team i n  the integrand is 

and 

-3 

P(0) is 

(11-5) 

(11-6) 

found v i a  the wishart  law,  which i n  t h i s  case is the n var ia te  
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where d = 1 [ (Z-Si)j - (-g2 
and normalizing by introducing aterm c to insure 

k-1 j-1 

0 

[ cf ($';1/a2) dp = 1 
0 

where P = 11.2 

(11-8) 

where Ck I s  the required normalizing term developed by Wishart 
,"O 

n 

(11-10) 

2 -4 Q~ and 8 are the multivariate analogs of 8 and 11s respectively. 
go is an estimate of 0 based upon no initial samplce f r o m  a population 

containing 0 with confidence consistent with no 

inititil gueae weighted by no* 

Qo 1s simply an 

for the @ identically distributed, with 
3 

[g-gil[-gil ' > - ;; f (43-8 - -i ) 3 (0 --4 8 ) '  3 
3=1 

(11-12) 

Neglecting the denominator of (11-5) since it only serve8 to normalize 

P(O I g;Ei) to eatisfy d0 = 1 and using (11-9)) (11-U), 
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01-13] 

Thus P(elg;%) is  a Wishart density, W(k,?,al) w i t h  parameters 

5 = no+" 

( 11-14 ) 
n +n 
0 

Substi tuting "1, Ql i n to  (11-13) and modifying C t o  absorb the ef fec ts  

U s i n g  (11-4) and (II-l5), the  in tegra l  of (11-3) is 

p(n le ;Q  - p ( e I z q )  = 

I (11-16) 
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Using (11-16) into (11-3) 

But an identity formulated by Cramer has 
nl-k-1 (11-18) - TRAB 

1 dBu * * *  deb = 1 n J'.$ l e 1  2 e 

I A F  

-1 Assuming is  non singular, exis ts ,  and hence 

(11-20) 
Factoring the numerator of (11-19) and substituting (11-20) yields 

(11-21) 
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For t he  conditions of the  derivation, the iden t i t i e s  (XI-22 1 

and when normalized, becomes 
n, 


